Universidad de Jaén: inteligencia artificial para identificar las emociones en Twitter

Los investigadores desarrollan un método, que reconoce el estado de ánimo de los usuarios de esta red social, dirigido a detectar casos de depresión o anorexia

Un equipo de investigación de la Universidad de Jaén (UJA) ha desarrollado un sistema basado en inteligencia artificial para reconocer las emociones de los usuarios en Twitter. Esta tecnología, aplicada por primera vez al idioma castellano, percibe el estado anímico de las personas que escriben mensajes en la red social, los analiza y clasifica. Los investigadores orientan la información obtenida a áreas como la detección de la depresión, de anorexia y bulimia o el lenguaje abusivo y violento, entre otros ámbitos.

Las tecnologías del lenguaje humano son una rama de la inteligencia artificial que se centra en el estudio de sistemas computacionales que son capaces de comprender y generar lenguaje. Este campo está relacionado con el aprendizaje automático (machine learning), que es la capacidad de un software o una máquina para identificar y aprender patrones complejos en forma de algoritmos matemáticos de manera autónoma.

Los expertos aplican esta tecnología a un conjunto de datos compuestos por tuits previamente recopilados y analizados por humanos con el fin de detectar emociones en el texto. Además, enseñan a la máquina cómo interpretar nuevos términos en castellano incorporando diccionarios y lexicones al sistema.

«Esta tecnología puede aplicarse a ámbitos diversos con la finalidad de detectar problemas de salud mental o violencia verbal«, ha explicado Flor Miriam Plaza, coautora de este estudio e investigadora de la Universidad de Jaén.

En el estudio publicado en la revista ‘Future Generation Computer Systems‘, los expertos entrenan el sistema de un ordenador con una serie de tuits ya recopilados e interpretados con anterioridad en el idioma español.

De este modo, genera un modelo de lenguaje que le permite reconocer emociones tales como el enfado, el miedo, la alegría y la tristeza. «Es un trabajo complejo porque no se trata de una clasificación binaria de emociones negativas y positivas. Hay muchos matices para detectar la alegría, la tristeza o la sorpresa, por ejemplo», ha comentado la investigadora de la UJA María Teresa Martín.

Detección de las emociones

Una vez integrada esta información básica en el sistema, los investigadores incluyeron palabras nuevas de diccionarios para ampliar la cantidad de matices que ésta pudiera percibir e incrementar su precisión. Esta enseñanza paulatina de lenguaje, independiente de la base de datos previamente desarrollada, tenía la finalidad de mejorar la efectividad del sistema.

Los expertos observaron en este estudio que la emoción más representada en los tuits era la alegría porque era más fácil de identificar para el sistema que el enfado, el miedo o la tristeza, que poseen mayores matices.

El investigador de la Universidad de Jaén Luis Alfonso Ureña ha apuntado que «no es un proceso perfecto porque esta tecnología no percibe con claridad figuras del lenguaje como la ironía, el sarcasmo o las frases hechas y, además, se generan nuevas expresiones continuamente». Por ello, «para perfeccionar este sistema, hay que ‘enseñar’ a la máquina continuamente en un idioma concreto, como el castellano de España o el inglés británico».

En estudios previos, se puso el foco en la detección de la anorexia y la bulimia y el lenguaje misógino y xenófobo en redes sociales. En el futuro, el objetivo es mejorar la tecnología basada en inteligencia artificial y aprendizaje automático que utilizamos para aplicarla a una mayor variedad de ámbitos.

Esta investigación ha sido financiada por los fondos propios del grupo de investigación de la Universidad de Jaén, FEDER, el proyecto Living-LANG y el proyecto Redes.

Pabilo Editorial
El Recreo Diario
El Recreo Diario es un periódico escolar, educativo y cultural. Entre nuestros objetivos está ofrecer contenidos actuales y frescos para lectores curiosos e inquietos. También queremos servir de plataforma de debate y retroalimentación entre todos los agentes de estos sectores claves para una sociedad sana y moderna.